Tobias Moser, laureate of the 2020 scientific grand prize

scientific prize (19/11/2020)


The Fondation Pour l’Audition’s 2020 Scientific Grand Prize has been awarded to Tobias Moser for his pioneering work combining optics and genetics, which opens the way to the development of innovative cochlear implants for people with hearing loss.


Tobias Moser is an ENT Doctor, Professor of Auditory Neuroscience and Founder of the Institute for Auditory Neuroscience and InnerEarLab at the Göttingen University Medical Center in Germany. He also heads up research teams at the Max Planck Institute for Biophysical Chemistry, the Max Planck Institute for Experimental Medicine and the German Primate Center in Göttingen.

His current research aims to improve cochlear implants through optogenetics, an innovative technique combining optics and genetics.


After graduating in medicine from the University of Jena in Germany in 1995, Tobias Moser undertook postdoctoral research in biophysics at the Max Planck Institute for Biophysical Chemistry in Göttingen. In 2001, he created his own laboratory, the InnerEarLab, at the Göttingen University Medical Center. At the same time, he pursued his medical specialization in otolaryngology, which he completed in 2003. In 2007, he was appointed Professor of Auditory Neuroscience and Research Director. In 2015, he founded the Institute for Auditory Neuroscience and assumed its leadership.

As a world-renowned expert in the cochlea and sensory hair cells, Professor Tobias Moser has received numerous distinctions, including the Gottfried Wilhelm Leibniz Award of the German Research Foundation in 2015.


Professor Moser has focused his career on explaining the cellular and molecular mechanisms that transform the sound vibrations received by the ear into electrical impulses transmitted to the brain via the acoustic nerve. This process takes place in the cochlea, a tiny organ in the inner ear. It requires highly precise communication between the hair cells in the inner ear, which receive the sound vibrations, and the neurons in the acoustic nerve.

Currently, Professor Moser is aiming to exploit his discoveries to improve the performance of cochlear implants, the electronic auditory implants that have restored hearing to people with profound hearing loss for 30 years, although with imperfect results, given the technical limitations. In fact, electrical stimulation of the acoustic nerve by electrodes implanted in the cochlea is imprecise and does not restore the full range of frequencies normally perceived by the ear. This makes it hard for patients to follow a conversation in a noisy environment or enjoy listening to music.

An enlightened innovation

In recent years, Professor Moser and his team have designed an optical cochlear implant to replace traditional electronic implants, based on a new technology to stimulate the acoustic nerve, optogenetics.

How does it work? First, a light-activated protein-coding gene is inserted into the cochlear nerve cells, which become sensitive to light. The implant transforms sound vibrations into light signals, which are carried by optical fibers into the cochlea. The acoustic nerve is then stimulated very delicately by the light generated by the implant. Tobias Moser’s team recently confirmed the feasibility and efficacy of this approach in rodent models of human deafness.

What makes this optical implant particularly interesting is its resolution, which is considerably higher than electronic cochlear implants. This disruptive innovation promises a considerable improvement in the quality of restored audible sound, especially that of music and speech in noisy background.

Building on these encouraging results, Professor Moser has founded OptoGenTech, a start-up focusing on the development of the optical cochlear implant for patients.